Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
MAbs ; 15(1): 2222874, 2023.
Article in English | MEDLINE | ID: covidwho-20243537

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Antibodies induced by SARS-CoV-2 infection or vaccination play pivotal roles in the body's defense against the virus; many monoclonal antibodies (mAbs) against SARS-CoV-2 have been cloned, and some neutralizing mAbs have been used as therapeutic drugs. In this study, we prepared an antibody panel consisting of 31 clones of anti-SARS-CoV-2 mAbs and analyzed and compared their biological activities. The mAbs used in this study were classified into different binding classes based on their binding epitopes and showed binding to the SARS-CoV-2 spike protein in different binding kinetics. A multiplex assay using the spike proteins of Alpha, Beta, Gamma, Delta, and Omicron variants clearly showed the different effects of variant mutations on the binding and neutralization activities of different binding classes of mAbs. In addition, we evaluated Fcγ receptor (FcγR) activation by immune complexes consisting of anti-SARS-CoV-2 mAb and SARS-CoV-2 pseudo-typed virus, and revealed differences in the FcγR activation properties among the binding classes of anti-SARS-CoV-2 mAbs. It has been reported that FcγR-mediated immune-cell activation by immune complexes is involved in the promotion of immunopathology of COVID-19; therefore, differences in the FcγR-activation properties of anti-SARS-CoV-2 mAbs are among the most important characteristics when considering the clinical impacts of anti-SARS-CoV-2 mAbs.


Subject(s)
Antigen-Antibody Complex , COVID-19 , Humans , Receptors, IgG , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal
2.
Eur J Intern Med ; 105: 1-7, 2022 11.
Article in English | MEDLINE | ID: covidwho-2309780

ABSTRACT

Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a rare syndrome characterized by high-titer anti-platelet factor 4 (PF4) antibodies, thrombocytopenia and arterial and venous thrombosis in unusual sites, as cerebral venous sinuses and splanchnic veins. VITT has been described to occur almost exclusively after administration of ChAdOx1 nCoV-19 and Ad26.COV2.S adenovirus vector- based COVID-19 vaccines. Clinical and laboratory features of VITT resemble those of heparin-induced thrombocytopenia (HIT). It has been hypothesized that negatively charged polyadenylated hexone proteins of the AdV vectors could act as heparin to induce the conformational changes of PF4 molecule that lead to the formation of anti-PF4/polyanion antibodies. The anti-PF4 immune response in VITT is fostered by the presence of a proinflammatory milieu, elicited by some impurities found in ChAdOx1 nCoV-19 vaccine, as well as by soluble spike protein resulting from alternative splice events. Anti-PF4 antibodies bind PF4, forming immune complexes which activate platelets, monocytes and granulocytes, resulting in the VITT's immunothrombosis. The reason why only a tiny minority of patents receiving AdV-based COVID-19 vaccines develop VITT is still unknown. It has been hypothesized that individual intrinsic factors, either acquired (i.e., pre-priming of B cells to produce anti-PF4 antibodies by previous contacts with bacteria or viruses) or inherited (i.e., differences in platelet T-cell ubiquitin ligand-2 [TULA-2] expression) can predispose a few subjects to develop VITT. A better knowledge of the mechanistic basis of VITT is essential to improve the safety and the effectiveness of future vaccines and gene therapies using adenovirus vectors.


Subject(s)
COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Thrombosis , Vaccines , Humans , Antigen-Antibody Complex , COVID-19 Vaccines/adverse effects , Ad26COVS1 , ChAdOx1 nCoV-19 , Ligands , Spike Glycoprotein, Coronavirus , COVID-19/prevention & control , Platelet Factor 4/genetics , Platelet Factor 4/metabolism , Heparin/adverse effects , Thrombocytopenia/chemically induced , Vaccines/adverse effects , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Ubiquitins
3.
Appl Microbiol Biotechnol ; 107(11): 3429-3441, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2305306

ABSTRACT

Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.


Subject(s)
COVID-19 , ISCOMs , Humans , Mice , Animals , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , SARS-CoV-2 , Antigen-Antibody Complex , Pandemics/prevention & control , HEK293 Cells , Antibodies, Viral , Antibodies, Neutralizing , Adjuvants, Immunologic , Aluminum Hydroxide
4.
Int Immunopharmacol ; 117: 109954, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2279768

ABSTRACT

We analyzed the ability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) itself and SARS-CoV-2-IgG immune complexes to trigger human monocyte necroptosis. SARS-CoV-2 was able to induce monocyte necroptosis dependently of MLKL activation. Necroptosis-associated proteins (RIPK1, RIPK3 and MLKL) were involved in SARS-CoV-2N1 gene expression in monocytes. SARS-CoV-2 immune complexes promoted monocyte necroptosis in a RIPK3- and MLKL-dependent manner, and Syk tyrosine kinase was necessary for SARS-CoV-2 immune complex-induced monocyte necroptosis, indicating the involvement of Fcγ receptors on necroptosis. Finally, we provide evidence that elevated LDH levels as a marker of lytic cell death are associated with COVID-19 pathogenesis.


Subject(s)
Antigen-Antibody Complex , COVID-19 , Humans , Antigen-Antibody Complex/metabolism , SARS-CoV-2 , Protein Kinases/metabolism , Monocytes , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
6.
Biosensors (Basel) ; 12(7)2022 Jun 21.
Article in English | MEDLINE | ID: covidwho-2282211

ABSTRACT

The presence of pathogen-specific antibodies in the blood is widely controlled by a serodiagnostic technique based on the lateral flow immunoassay (LFIA). However, its common one-stage format with an antigen immobilized in the binding zone of a test strip and a nanodispersed label conjugated with immunoglobulin-binding proteins is associated with risks of very low analytical signals. In this study, the first stage of the immunochromatographic serodiagnosis was carried out in its traditional format using a conjugate of gold nanoparticles with staphylococcal immunoglobulin-binding protein A and an antigen immobilized on a working membrane. At the second stage, a labeled immunoglobulin-binding protein was added, which enhanced the coloration of the bound immune complexes. The use of two separated steps, binding of specific antibodies, and further coloration of the formed complexes, allowed for a significant reduction of the influence of non-specific immunoglobulins on the assay results. The proposed approach was applied for the serodiagnosis using a recombinant RBD protein of SARS-CoV-2. As a result, an increase in the intensity of test zone coloration by more than two orders of magnitude was demonstrated, which enabled the significant reduction of false-negative results. The diagnostic sensitivity of the LFIA was 62.5% for the common format and 100% for the enhanced format. Moreover, the diagnostic specificity of both variants was 100%.


Subject(s)
COVID-19 , Metal Nanoparticles , Antigen-Antibody Complex , COVID-19/diagnosis , Gold/chemistry , Humans , Immunoassay/methods , Limit of Detection , Metal Nanoparticles/chemistry , SARS-CoV-2 , Serologic Tests
7.
Front Immunol ; 14: 1098665, 2023.
Article in English | MEDLINE | ID: covidwho-2269468

ABSTRACT

Platelet factor 4 (PF4), also known as chemokine (C-X-C motif) ligand 4 (CXCL4), is a specific protein synthesized from platelet α particles. The combination of PF4 and heparin to form antigenic complexes is an important mechanism in the pathogenesis of heparin-induced thrombocytopenia (HIT), but vaccine-induced immune thrombotic thrombocytopenia (VITT) related to the COVID-19 vaccine makes PF4 a research hotspot again. Similar to HIT, vaccines, bacteria, and other non-heparin exposure, PF4 can interact with negatively charged polyanions to form immune complexes and participate in thrombosis. These anions include cell surface mucopolysaccharides, platelet polyphosphates, DNA from endothelial cells, or von Willebrand factor (VWF). Among them, PF4-VWF, as a new immune complex, may induce and promote the formation of immune-associated thrombosis and is expected to become a new target and therapeutic direction. For both HIT and VITT, there is no effective and targeted treatment except discontinuation of suspected drugs. The research and development of targeted drugs based on the mechanism of action have become an unmet clinical need. Here, this study systematically reviewed the characteristics and pathophysiological mechanisms of PF4 and VWF, elaborated the potential mechanism of action of PF4-VWF complex in immune-associated thrombosis, summarized the current status of new drug research and development for PF4 and VWF, and discussed the possibility of this complex as a potential biomarker for early immune-associated thrombosis events. Moreover, the key points of basic research and clinical evaluation are put forward in the study.


Subject(s)
COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Thrombosis , Humans , Acceleration , Antigen-Antibody Complex , COVID-19/complications , COVID-19 Vaccines/adverse effects , Endothelial Cells/metabolism , Heparin/metabolism , Immunologic Factors , Platelet Factor 4 , Purpura, Thrombocytopenic, Idiopathic/complications , Thrombocytopenia/etiology , Thrombosis/complications , von Willebrand Factor
8.
Ultrastruct Pathol ; 47(1): 22-29, 2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2246155

ABSTRACT

Infection-related glomerulonephritis is well recognized in patients with ongoing infections. It can be missed, however, if the infection is unusual or undetected. We present three cases where the renal biopsy findings prompted the identification or treatment of systemic infections.Case 1: A 84-year-old male presented with acute kidney injury (AKI) and IgA vasculitis on skin biopsy. A renal biopsy showed active glomerulonephritis with abundant neutrophils and predominantly mesangial immune complex deposits containing IgA. The findings prompted an infectious workup which was positive for COVID-19, suggesting exacerbation of IgA nephropathy by recent COVID-19 infection. Case 2: A 31-year-old female status post kidney transplant for granulomatosis with polyangiitis (GPA) had recent pregnancy with preterm delivery, disseminated herpes simplex virus (HSV) infection with HSV hepatitis, E. coli on urine culture, and AKI. A renal biopsy showed proliferative glomerulonephritis with subendothelial and mesangial immune complex deposits containing IgG and C3. The findings were most consistent with infection-related immune complex glomerulonephritis, most likely HSV-related. Case 3: A 78-year-old female presented with AKI, proteinuria, hematuria, and positive p-ANCA. Clinically, ANCA vasculitis was suspected, and renal biopsy did show focal, segmental, necrotizing glomerulonephritis. However, immunofluorescence and electron microscopy showed IgM-rich deposits in the mesangium. The unusual presentation prompted an infectious workup including a Bartonella antibody panel which showed very high titers, suggesting Bartonella endocarditis.Infection-related glomerulonephritis has a wide variety of presentations histologically and clinically. The three cases we present here emphasize the importance of recognizing these entities to help guide treatment and improve patient care.


Subject(s)
Acute Kidney Injury , COVID-19 , Glomerulonephritis, IGA , Glomerulonephritis , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Acute Kidney Injury/etiology , Antigen-Antibody Complex , Biopsy , COVID-19/complications , Escherichia coli , Glomerulonephritis/pathology , Glomerulonephritis, IGA/pathology
9.
Phytomedicine ; 109: 154551, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2182294

ABSTRACT

BACKGROUND: The significant clinical efficacy of Xuanfei Baidu Decoction (XFBD) is proven in the treatment of patients with coronavirus disease 2019 (COVID-19) in China. However, the mechanisms of XFBD against acute lung injury (ALI) are still poorly understood. METHODS: In vivo, the mouse model of ALI was induced by IgG immune complexes (IgG-IC), and then XFBD (4g/kg, 8g/kg) were administered by gavage respectively. 24 h after inducing ALI, the lungs were collected for histological and molecular analysis. In vitro, alveolar macrophages inflammation models induced by IgG-IC were performed and treated with different dosage of XFBD-containing serum to investigate the protective role and molecular mechanisms of XFBD. RESULTS: The results revealed that XFBD mitigated lung injury and significantly downregulated the production of pro-inflammatory mediators in lung tissues and macrophages upon IgG-IC stimulation. Notably, XFBD attenuated C3a and C5a generation, inhibited the expression of C3aR and C5aR and suppressed the activation of JAK2/STAT3/SOCS3 and NF-κB signaling pathway in lung tissues and macrophages induced by IgG-IC. Moreover, in vitro experiments, we verified that Colivelin TFA (CAF, STAT3 activator) and C5a treatment markedly elevated the IgG-IC-triggered inflammatory responses in macrophages and XFBD weakened the effects of CAF or C5a. CONCLUSION: XFBD suppressed complement overactivation and ameliorated IgG immune complex-induced acute lung injury by inhibiting JAK2/STAT3/SOCS3 and NF-κB signaling pathway. These data contribute to understanding the mechanisms of XFBD in COVID-19 treatment.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Humans , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Antigen-Antibody Complex/metabolism , COVID-19/pathology , COVID-19 Drug Treatment , Immunoglobulin G , Janus Kinase 2/metabolism , Lipopolysaccharides , Lung/pathology , NF-kappa B/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism
10.
Kidney Int ; 102(4): 740-749, 2022 10.
Article in English | MEDLINE | ID: covidwho-2150236

ABSTRACT

Four decades after the first cases of HIV were reported, kidney disease remains an important comorbidity in people with HIV (PWH). Both HIV-associated nephropathy and immune complex kidney disease were recognized as complications of HIV infection in the early years before treatment was available. Although the introduction of effective antiretroviral therapy in the late 1990s resulted in dramatic improvements in survival and health in PWH, several commonly used antiretroviral agents have been associated with kidney injury. HIV infection and treatment may also promote the progression of comorbid chronic kidney disease due to traditional risk factors such as diabetes, and HIV is one of the strongest "second hits" for the high-risk APOL1 genotype. Unique considerations in the management of chronic kidney disease in PWH are largely related to the need for lifelong antiretroviral therapy, with potential for toxicity, drug-drug interactions, and polypharmacy. PWH who develop progressive chronic kidney disease are candidates for all modalities of kidney replacement therapy, including kidney transplantation, and at some centers, PWH may be candidates to serve as donors for recipients with HIV. Transplantation of kidney allografts from donors with HIV also offers a unique opportunity to study viral dynamics in the kidney, with implications for kidney health and for research toward HIV cure. In addition, HIV-transgenic animal models have provided important insights into kidney disease pathogenesis beyond HIV, and experience with HIV and HIV-related kidney disease has provided important lessons for future pandemics.


Subject(s)
AIDS-Associated Nephropathy , HIV Infections , Renal Insufficiency, Chronic , AIDS-Associated Nephropathy/epidemiology , AIDS-Associated Nephropathy/therapy , Animals , Anti-Retroviral Agents/therapeutic use , Antigen-Antibody Complex , Apolipoprotein L1/genetics , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy
11.
Mol Immunol ; 152: 172-182, 2022 12.
Article in English | MEDLINE | ID: covidwho-2105610

ABSTRACT

Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Humans , Antibody-Dependent Enhancement , Complement C1q , Antigen-Antibody Complex , Antibodies, Viral
12.
Front Immunol ; 13: 842468, 2022.
Article in English | MEDLINE | ID: covidwho-2080127

ABSTRACT

The role of the mucosal pulmonary antibody response in coronavirus disease 2019 (COVID-19) outcome remains unclear. Here, we found that in bronchoalveolar lavage (BAL) samples from 48 patients with severe COVID-19-infected with the ancestral Wuhan virus, mucosal IgG and IgA specific for S1, receptor-binding domain (RBD), S2, and nucleocapsid protein (NP) emerged in BAL containing viruses early in infection and persist after virus elimination, with more IgA than IgG for all antigens tested. Furthermore, spike-IgA and spike-IgG immune complexes were detected in BAL, especially when the lung virus has been cleared. BAL IgG and IgA recognized the four main RBD variants. BAL neutralizing titers were higher early in COVID-19 when virus replicates in the lung than later in infection after viral clearance. Patients with fatal COVID-19, in contrast to survivors, developed higher levels of mucosal spike-specific IgA than IgG but lost neutralizing activities over time and had reduced IL-1ß in the lung. Altogether, mucosal spike and NP-specific IgG and S1-specific IgA persisting after lung severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance and low pulmonary IL-1ß correlate with COVID-19 fatal outcome. Thus, mucosal SARS-CoV-2-specific antibodies may have adverse functions in addition to protective neutralization. Highlights: Mucosal pulmonary antibody response in COVID-19 outcome remains unclear. We show that in severe COVID-19 patients, mucosal pulmonary non-neutralizing SARS-CoV-2 IgA persit after viral clearance in the lung. Furthermore, low lung IL-1ß correlate with fatal COVID-19. Altogether, mucosal IgA may exert harmful functions beside protective neutralization.


Subject(s)
COVID-19 , Interleukin-1beta/metabolism , SARS-CoV-2 , Antibodies, Viral , Antigen-Antibody Complex , Cross-Sectional Studies , Humans , Immunoglobulin A , Immunoglobulin G , Lung , Nucleocapsid Proteins , Spike Glycoprotein, Coronavirus
13.
Nat Commun ; 13(1): 5654, 2022 09 26.
Article in English | MEDLINE | ID: covidwho-2050371

ABSTRACT

A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is considered to be protective, excessive triggering of activating Fc-gamma-receptors (FcγRs) could be detrimental and cause immunopathology. Here, we document excessive FcγRIIIA/CD16A activation in patients developing severe or critical COVID-19 but not in those with mild disease. We identify two independent ligands mediating extreme FcγRIIIA/CD16A activation. Soluble circulating IgG immune complexes (sICs) are detected in about 80% of patients with severe and critical COVID-19 at levels comparable to active systemic lupus erythematosus (SLE) disease. FcγRIIIA/CD16A activation is further enhanced by afucosylation of SARS-CoV-2 specific IgG. Utilizing cell-based reporter systems we provide evidence that sICs can be formed prior to a specific humoral response against SARS-CoV-2. Our data suggest a cycle of immunopathology driven by an early formation of sICs in predisposed patients. These findings suggest a reason for the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. The involvement of circulating sICs in the promotion of immunopathology in predisposed patients opens new possibilities for intervention strategies to mitigate critical COVID-19 progression.


Subject(s)
COVID-19 , Antibodies, Viral , Antigen-Antibody Complex , Antiviral Agents , Humans , Immunoglobulin G , SARS-CoV-2
14.
Immunogenetics ; 74(5): 465-474, 2022 10.
Article in English | MEDLINE | ID: covidwho-2048215

ABSTRACT

We herein analyzed all available protein-protein interfaces of the immune complexes from the Protein Data Bank whose antigens belong to pathogens or cancers that are modulated by fever in mammalian hosts. We also included, for comparison, protein interfaces from immune complexes that are not significantly modulated by the fever response. We highlight the distribution of amino acids at these viral, bacterial, protozoan and cancer epitopes, and at their corresponding paratopes that belong strictly to monoclonal antibodies. We identify the "hotspots", i.e. residues that are highly connected at such interfaces, and assess the structural, kinetic and thermodynamic parameters responsible for complex formation. We argue for an evolutionary pressure for the types of residues at these protein interfaces that may explain the role of fever as a selective force for optimizing antibody binding to antigens.


Subject(s)
Antibodies, Monoclonal , Antigen-Antibody Complex , Animals , Antibodies, Monoclonal/metabolism , Antigen-Antibody Complex/chemistry , Binding Sites, Antibody , Databases, Protein , Epitopes , Mammals
15.
J Immunol Methods ; 510: 113328, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1977497

ABSTRACT

Monocytes are highly versatile innate immune cells responsible for pathogen clearance, innate immune coordination, and induction of adaptive immunity. Monocytes can directly and indirectly integrate pathogen-destructive instructions and contribute to disease control via pathogen uptake, presentation, or the release of cytokines. Indirect pathogen-specific instructions are conferred via Fc-receptor signaling and triggered by antibody opsonized material. Given the tremendous variation in polyclonal humoral immunity, defining the specific antibody-responses able to arm monocytes most effectively remains incompletely understood. While monocyte cell line-based assays have been used previously, cell lines may not faithfully recapitulate the full biology of monocytes. Thus, here we describe a multifaceted antigen-specific method for probing antibody-dependent primary monocyte phagocytosis (ADMP) and secondary responses. The assay not only reliably captures phagocytic uptake of immune complexes, but also detects unique changes in surface markers and cytokine secretions profiles, poorly detected by monocytic cell lines. The assay captures divergent polyclonal-monocyte recruiting activity across subjects with varying SARS-CoV-2 disease severity and also revealed biological nuances in Fc-mutant monoclonal antibody activity related to differences in Fc-receptor binding. Thus, the ADMP assay is a flexible assay able to provide key insights into the role of humoral immunity in driving monocyte phenotypic transitions and downstream functions across many diseases.


Subject(s)
COVID-19 , Monocytes , Antibodies, Monoclonal , Antigen-Antibody Complex , Antigens , Cytokines , Humans , Immunoglobulin Fc Fragments , Phagocytosis , SARS-CoV-2
16.
BMJ Case Rep ; 15(7)2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1950070

ABSTRACT

Cryoglobulinaemic vasculitis is an immune-complex-mediated, systemic inflammatory syndrome usually involving small-to-medium vessels due to precipitation of cryoglobulins at <37°C. It can involve any organ but most commonly affects the skin. Associated conditions include infections (hepatitis C and HIV), haematological disorders (chronic lymphocytic lymphoma, monoclonal gammopathy of uncertain significance and multiple myeloma), autoimmune conditions (systemic lupus erythematosus and Sjogren syndrome) or as a complication following vaccination (influenza, pneumococcal and hepatitis B vaccines). Biochemical hallmarks include detection of serum cryoglobulin with low C4 levels. We describe a case of previous healthy patient with transient cryoglobulinaemic vasculitis after first dose of ChAdOx1 nCoV-19 vaccine (AstraZeneca/Oxford).


Subject(s)
Cryoglobulinemia , Sjogren's Syndrome , Vasculitis , Antigen-Antibody Complex , ChAdOx1 nCoV-19 , Cryoglobulinemia/diagnosis , Humans , Sjogren's Syndrome/complications , Vaccination , Vasculitis/complications
17.
Brain ; 145(7): 2555-2568, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1922202

ABSTRACT

The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.


Subject(s)
COVID-19 , Nervous System Diseases , Adult , Antigen-Antibody Complex , Complement Activation , Endothelial Cells , Humans , Inflammation , SARS-CoV-2
18.
J Colloid Interface Sci ; 626: 113-122, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-1907262

ABSTRACT

Detailed evaluations of the antigen and antibody interaction rate and strength of the immune complex formed are very important for medical and bioanalytical applications. These data are crucial for the development of sensitive and fast immunosensors suitable for continuous measurements. Therefore, combined spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation (QCM-D) technique (SE/QCM-D) was used for the evaluation: (i)of covalent immobilization of SARS-CoV-2 nucleocapsid protein (SCoV2-N) on QCM-D sensor disc modified by self-assembled monolayer based on 11-mercaptoundecanoic acid and (ii)interaction of immobilized SCoV2-N with specific polyclonal anti-SCoV2-N antibodies followed by immune complex formation process. The results show that the SCoV2-N monolayer is rigid due to the low energy dissipation registered during the QCM-D measurement. In contrast, the anti-SCoV2-N layer produced after interaction with the immobilized SCoV2-N formed a soft and viscous layer. It was determined, that the sparse distribution of SCoV2-N on the surface affected the spatial arrangement of the antibody during the formation of immune complexes. The hinge-mediated flexibility of the antibody Fab fragments allows them to reach the more distantly located SCoV2-N and establish a bivalent binding between proteins in the formed SCoV2-N/anti-SCoV2-N complex. It was noted that the SE/QCM-D method can provide more precise quantitative information about the flexibility and conformational changes of antibody during the formation of the immune complex on the surface over time.


Subject(s)
Antibodies, Viral/immunology , Biosensing Techniques , COVID-19 , Antigen-Antibody Complex , Biosensing Techniques/methods , Humans , Immunoassay , Nucleocapsid Proteins , Quartz , Quartz Crystal Microbalance Techniques , SARS-CoV-2
19.
Biosensors (Basel) ; 12(5)2022 May 18.
Article in English | MEDLINE | ID: covidwho-1869469

ABSTRACT

SARS-CoV-2 vaccines provide strong protection against COVID-19. However, the emergence of SARS-CoV-2 variants has raised concerns about the efficacy of vaccines. In this study, we investigated the interactions of specific polyclonal human antibodies (pAb-SCoV2-S) produced after vaccination with the Vaxzevria vaccine with the spike proteins of three SARS-CoV-2 variants of concern: wild-type, B.1.1.7, and B.1.351. Highly sensitive, label-free, and real-time monitoring of these interactions was accomplished using the total internal reflection ellipsometry method. Thermodynamic parameters such as association and dissociation rate constants, the stable immune complex formation rate constant (kr), the equilibrium association and dissociation (KD) constants and steric factors (Ps) were calculated using a two-step irreversible binding mathematical model. The results obtained show that the KD values for the specific antibody interactions with all three types of spike protein are in the same nanomolar range. The KD values for B.1.1.7 and B.1.351 suggest that the antibody produced after vaccination can successfully protect the population from the alpha (B.1.1.7) and beta (B.1.351) SARS-CoV-2 mutations. The steric factors (Ps) obtained for all three types of spike proteins showed a 100-fold lower requirement for the formation of an immune complex when compared with nucleocapsid protein.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Viral , Antigen-Antibody Complex , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
20.
Saudi Med J ; 43(5): 522-525, 2022 May.
Article in English | MEDLINE | ID: covidwho-1836052

ABSTRACT

COVID vaccinations have been an important step in controlling the COVID-19 pandemic. Despite the fact they were generally safe and effective, a few case reports of renal disorders have been published following COVID vaccines. We report a 29-year-old man with history of Chronic Kidney Disease who presented to our center with flank pain after receiving AstraZeneca COVID vaccine. He also had history of raw milk ingestion. His initial investigations showed high creatinine with high level of proteinuria. A renal biopsy was consistent with immune complex-mediated glomerulonephritis on top of renal fibrosis. His brucella serology also showed high titer. He was started on treatment for Brucellosis and planned for follow-up afterwards for further therapy. To the best of our knowledge, this is the first reported case of concomitant Brucellosis and post COVID vaccine glomerulonephritis.


Subject(s)
Brucellosis , COVID-19 , Glomerulonephritis , Vaccines , Adult , Antigen-Antibody Complex , Brucellosis/complications , Brucellosis/drug therapy , COVID-19/complications , COVID-19 Vaccines/adverse effects , Female , Glomerulonephritis/etiology , Glomerulonephritis/pathology , Humans , Male , Pandemics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL